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We obtain a solution of the problem on the stress-strain state of an inhomogene- 
ous isotropic layer, the elastic characteristics of which are bounded and integra- 

ble functions of a single Cartesian coordinate. The layer is bonded continuously 

to a homogeneous half-space, and is acted upon by the mass forces. 
The problem arises in the analysis of coverings. The earlier papers dealt with 

particular cases in which an open surface was acted upon by a normal load. In 

[l, 21 such a problem was studied for an exponential law of variation of the mo- 

dulus of elasticity with depth, with the Poisson’s ratio remaining constant, while 

in p] the same problem was studied for a hyperbolic law. This was done by con- 
sidering an axisymmetric deformation of an inhomogeneous layer resting on a 

perfectly rigid support. In [4] a solution was obtained for an incompressible ma- 

terial in which the shear modulus changed linearly with depth, while in [5, 61 a 

solution was obtained for an arbitrary law of change and a constant Poisson’s ra- 
tio. The method used in the latter case deserves attention. In the course of solu- 

tion the layer was replaced by a system of n interconnected homogeneous iso- 
tropic plates of equal thickness, the elasticity moduli of which were defined by 
a given function of the inhomogeneity. Passage to the limit a 2 00 gave a for- 

mally exact solution of the initial problem. It appears, that the action of shear- 
ing loads and forces applied within the layer has, so far, not been investigated. 

1. Using the method developed in (71, we split the system of equilibrium equations 
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written in displacements for an inhomogeneous isotropic medium, the shear modulus 
and the Poisson’s ratio v of which are both functions of the Cartesian coordinate 2, 

G 
into 

two subsystems 
-..E- -(I - vj AS, -+ 
1-h L 

~~~+~[Gi~-l~Ijl+~~-O(l.l) 

AG~~.,,~,:;-~-~{~[~AS~+(~-~)~]~-(-ZI=O 

(1.2) 

Here X, Y and 2 are mass forces per unit volume. 
The components urand uy of the displacement vector can be written in terms of the 

functions Si and N, as follows: 

Setting in (1.1) and (1.2) 

u, sz, $$ 
C 
vA&+(l -v)z 1 = S, 

G($+uz)=S,, G$&N, 

we obtain the following systems : 

as1 

aZ= 
-s,+-+,, g= - &- AS1 --t- 2 ;l;;; c & (I. 3) 

dSs 
-=-- 

dz 
ASI- Z, 2= -&AS,- &- S3 - 'pl 

aN1 ’ Nz, 
a2 =C 

?.$z- GANI - ‘PZ (1.4) 

Thus the solution of any problem of the theory of elasticity can be reduced to obtaining 
the solutions of the systems (1.3) and (1.4) satisfying the given boundary conditions, for 

the region occupied by the body. 

All components of the stress tensor can be expressed in terms of the unknown functions 
introduced above and of their derivatives in 5 and y only : 

6, = 2G &A+~)S,+&S,+2G~ 

oy = 2G 
( 
&A +&)S,+ &S,-2G* axarj 

6, = &, awl TV,, = 2G - - 
axay 

G +&&)X1 
( 

z as4 4 ah 
rz=x I --&y-v z 

as4 ah 
YZ 

=---_ 

ay ax 

(I. 5) 

In the cylindrical coordinates r, p, z the components of the displacement vector 
and stress tensor are written in the form 
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The results obtained allow us to solve a number of novel problems in the theory of elas- 

ticity on the inhomogeneous media. We consider two of these problems. 

2. An inhomogeneous layer 0 < z < h bonded continuously to a homogeneous 

isotropic half-space is acted upon by the mass forces Z = Z( r’, p, z) (Fig. 1). The 

variation of the elastic properties of the layer with depth is described by the functions 
G(r) = G(l) (z) and v(l) = Y(‘) (2). The shear modulus and the Poisson’s ratio of the 

half-space are denoted by (32) and v(s), respectively. Our aim is to find the stresses and 

strains in the inhomogeneous layer. 
Validity of the operations that follow is ensured by assuming that the functions G(l) 

and ~(‘1 are bounded and Riemann-integrable in the interval 10, hl and, that 2 (r, 
/3, z) can be written as a double Fourier series in p and a Hankel integral in r 

2 (r,p, Z)= +i 

05 

eimPS] g(Z, (4 m)J,(UJ)ada (2.1) 

m=-ca 0 

2x m 

2 (r, $,rz) J, (ar) re-i”Qrdp 

where J,( ar) is a m-th order Bessel function of the first kind. 
The boundary conditions of the problem at the layer surface (z = 0) have the form 

(J,(l) zz &Cl) 5 qJ1) z 0 (2.2) 

Here and in the following the superscript 1 refers 
to the layer and the superscript 2 to the half-space. 

At the plane of contact between the layer and 
the half-space (z = h) the conditions of perfect 

bond are the boundary conditions. This means 

that the following equations must hold : 

Fig. 1 

From the condition of the problem it follows that 
q1 = cps = 0. Let us also set N, = nT2 = 0. 
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The solution of the prohlem therefore consists of finding such solutions of (1.3) for the 
half-space and the layer, which would satisfy the boundary conditions (2.2) and (2.3). 

We seek the solution of (1.3) in the form 

1 
--y sy (2, a, m) 

51”’ (z. u, m) 
dr fn=l,2) (2.4) 

ff SP’ (z, u, nt) 

s?’ (2, 3, m) 

where Sjcn) (Z, a, m) (1 = 1, 2, 3, 4) are functions to be determined. Substituting 

Sj@) from (2.4) and Z from (2.1) into Eqs, (1.3), we obtain a system of ordinary dif- 

ferential equations for the functions sj tn) (2, a, m) which in the matrix form become 

d,Sn)ldz = aAW_S~) - g(@D (n = i,2) (2.5) 

1 . 
0 -1 0 - ($3 

ytn) 
0 

1 - 24”) 
0 

A(n) (@fit, +)) z 1 - dni 2. {i - y(W) GW 

0 0 0 i 

2G(*) ,(n) 

l--v(*) O 1 -y(n) O 

sp (2, a, m) 0 

0 
p) = * ( D = * , 

g(l) = g (z, a, m) 

4”) (z, ct, m) 

gm z 0 

4 0 

Using the relations (1.6) to determine the components of the stress tensor and displace- 

ment vector and substituting the resulting expressions into the boundary conditions (2.2) 
and (2.3), we obtain 

ss(Q(O, a, m) = @!(O, a, m) = 0 (2.6) 

Sj(“) (h, a, m) = Sjc2) (h, CL, TTZ) (i=f,2,3,4) 

Moreover, from the condition of the boundedness of the stresses and displacements,? 

infinity it follows, that the functions s$e) (2, a, m) must be bounded when z + 00. 
Thus the three-dimensional problem of the theory of elasticity is reduced to the bound- 
ary value problems for the ordinary linear differential equations (2.5). 

Let us denote by Q,* (aA( the matrizant of the homogeneous system correspond- 
ing to the system (2.5) with n = 1. Then the solution of the inhomogeneous system 
with the boundary conditions S(l) jZ=a = S, is written in the form 

~$1) = 9,~ (aA( S, - ICI? (2.7) 

L 

K = 5 Qlz (aA( g (t, a, m) dt 
0 
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The solution simplifies considerably when the mass forces can be expressed in the form 

2 = 8 (2 - h,) f (r, P) (2.8) 

-t-m 

f (6 P> = J$ eimfi 5 g (a, m) J, (ar) &da 
m=--c.3 0 

where(e(z - &). h D is t e irac delta function. This is the case when the mass forces 
represent the load f {r, p) applied within the layer at the level z = $ and acting in 
the direction of the z-axis. Then, replacing in (2,7) g ( t, CC, m) by b ( t - h) g (ol, 
m) and inte~ating, we obtain 

K 
1 

0, Z<hI 

= .Qf, (UN)) g (a, m>, 2 > hr 
(2.9) 

When the load is applied at the surface of the inhomogeneous layer, we must set h, = 0 
in (2.9). 

When the matrizant is known, the computation of the components of the displacement 
vector and stress tensor obviously requires the knowledge of all elements of the column 
matrix SO. The elements of the third and fourth row are, according to the conditions 
(2.6), equal to zero. The remaining two rows. s,@)(O, a, m) and s,(‘)(O, a, m) 
can be found from the boundary conditions at z = h. To do this we need the solution 
of (2.5) for the half-space (n = 2). We assume that the solution bounded at infinity 
has the form (2.10) 

(2) _ 
a1 - - &) [(I - 2@) Cr -+- 2 (1 - Y(2)) c, - u(z - h)(C, -j- C& e-o@-@ 

s’,“’ = - -&- [Z (I - d2)) Cl + (I - 2x7(@) C2 + a (z - h) (Cl + C,)] e*W-h) 

SF’ = [Cl + a (2 - h) (C, + C,)] e-a(z-h) 

St’ = [C, - a (2 - h) (C, f- Cs)] e-a(z-h) 
Here and in the following Ck(k = 1, 2, . . . ) are functions of rrz and of the parame- 
ter a and can be determined from the boundary conditions (2.6), Let us introduce the 
following notation : 

S1) lz=h = 
(2.11) 

5’4” (12, a, m) 

sy (0, u, rn.) 

so = 
6:’ (0, u, m) 
_____ .._. ~6’_ . . .._.. _ =; 

II 



Here Qkl(k = 1, 2; l =- 1.2) are 2 x2 sub-matrices of the matrix S&“( aA(l 
Setting z 7~ h in the formulas (2.7) and (2.10) we find from the boundary conditions 

(2.6) all unknown functions of the parameters m and a 

U,(O) = (rn,, + MQ*,)-‘M, + MK,) (2.12) 

c = !&U,(O) - Kh’z 

M=& 
1 

1 -.- 2yW 2 (1 - $1) 

2 (1 _ v(2)) 1 _- 2& p> c=/i :: 1 

Thus the problem of determining the stress-strain state of the inhomogeneo~ layer and 

the half-space reduces, in the end, to computing improper integrals. Formulas for deter- 
mining the displacements in the inhomogeneous layer and in the half-space follow: 

up =: !2 s ei’@ J, (ar) s(zn’ (z, a, M) da (n = I, a) 
m= --co 0 

If the mass forces Z are independent of the angular coordinate fi, then the summa- 
tion sign must be deleted from all the above formulas, since g( Z, a, nz) = 0 for all 
m J= 0 and the series are reduced to single terms each of which corresponds to the case 
,n I:: 0. 

3, Let us now turn our attention to the problem of finding the matrizant of the homo- 
geneous system of differential equations corresponding to the system (2.5) with n = 1. 

If the shear modulus and the Poisson’s ratio of the layer are constant, the elements of the 
matrix A(‘) are also constant. The matrizant which reduces to E (&’ is the unit mat- 

rix) when z = ~a, has the form [8] 

a,,” (aA(‘)) =; &(Wz--z0,) (3.11 

The elements of this matrix can be computed without difficulty. Substituting the expres- 

sion (3.1) into the formulas of Sect. 2, we arrive at the problem of equilibrium of a ho- 
mogeneous layer bonded with a half-space and acted upon by the mass forces 2 . A 
particular case of this problem was dealt with in [9], where the authors investigated the 
stress-strain state of an elastic layer resting on a rigid support and acted upon by a con- 
centrated force P within the layer. The formulas of this paper can be obtained from 

our formulas given above, by making additional assumptions, namely that G(“) -+ 00 

and. that in the expression (2.9) 

The matrizant of the homogeneous system of differential equations co~es~nding to 
(2.5) is expressed by a matrix exponent also in the case when the shear modulus of the 
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layer varies with depth according to an exponential law of the form 

with a constant Poisson’s ratio. 
To prove this statement, we shall introduce a new unknown T using the following 

transformation 
” ,-bz 0 0 0 

0 ,-br 0 0 
S(r) = FT, F (z, b) = o o ,bz o 

(3.21 

0 0 0 $2 

As the result, we arrive at the following matrix equation: 

dT@z = BT, (3.3) 

b -U 0 -2 
cd) * u (1 - 241)) 

B (a, b, Gn, Y”‘) = * - @) 2 (1 -.(I)) Gn ’ 

0 0 -b c1 

2aGfJ C.&l 

1 _V(l) O - 1 _VW -b 

The elements of the matrix B are constant, therefore we have 

Q$ (aA -_ Fe* k~o)F*, F” = F-l jzz+ (3.4) 

Let us now assume that the interval [ 0, hl of variation of the variable z can be sub- 
divided by means of the points zr, z2, . . . into segments, within which the shear modu- 

lus is either constant, or varies exponentially, and the Poisson’s ratio v(l) = const. In 

this case, to obtain the solution of the homogeneous system of differential equations we 
must utilize the following property of the matrixant [8]: 

(3.5) 

In accordance with the argument given above, the matrices Q& (~~4~i~) (k = f., 2, 
. . .? n; z n = z), appearing in (3.5) can be represented by the exponential marrix 
functions. 

We illustrate the results obtained by considering a problem which arises in the analysis 
of renewable road surfaces. An inhomogeneous layer the elastic characteristics of which 

vary with depth according to the relation depicted in Fig. 2, is bonded in a continuous 
manner to a homogeneous elastic half-space and is acted upon by forces q normal to 
the surface and uniformly distributed over a circular area of radius 8. We must deter- 
mine the displacement U,(I) of the point lying at the coordinate origin. 

The mat&ant of a homogeneo~ system corresponding to (2.5) has, in accordance 

with the expressions (3. I), (3.4) and (3.5), the form 
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c. (zi, 0 < z < 21 

f2,r (adq = Q,lz (a.@)) v (a), 2.1 <z < 22 

cL2* (dl)) !a_ z*(3..1(“)) 1. (;,I, 

(3.6) 

-I zz < 5 5; h 

V’ (z) = F (z, b&f+, BI = B (a, b,, G,, vJ 

Q2,,” (aA (I)) = eAa(z-z,), A = A(‘) (G,, VJ 

G,,” (ad@)) = F (2 - z2, b2)eBp@-zp), B., = B (a, b,, G,$, V,J _ 

Using the matrizant (3.6) we find all ele- 
I’ci .c r ments of the matrices S, and $(l) from 

I 1 B 60 r 

~:II:; 

the formulas (2.12) and (2.7). and after this 

- the problem reduces to computing an im- 
proper integral for the component u,(i) for 

2==r=O. 
Some of the results obtained on the digi- 

tal computer are given in Table 1. The 

computations were performed for the case 
GW==G, and vi = vv2 = ya = y(s)=*/s. 

The penultimate column gives the values 
of the dimensionless quantity W-S ~~(I)~~~, 

Y, where P = d2q is the resultant of the 

external load. The last column gives the 

quantity R which characterizes the defor- 

mability of the elastic system in question. 
It shows how much smaller is the maximum 

sag of a homogeneous half-space with the 

modulus G, under a given load, compared 

with that of the inhomogeneous body in question under the same load. 
When the shear modulus varies with depth according to a relation of the form 

G(l) = G,( 1 -+ cz)” (3.7) 

h--z* 
6 

Table 1 

W R 

3.16 2.48 
2.78 3.27 
4.13 2.29 
5.87 6.92 
6.09 8.20 
6.60 5.18 
3.83 4.51 
2.23 7.87 
3.59 12.7 
1.30 3.35 



Inhomogeneous layer bonded to a half-space 821 

and the Poisson’s ratio v(l) = const. the matrixant elements can be written in terms of 

special functions. To prove it we introduce a function 9 such that 

s(l) 1 = * [(I - .(1),-g + uw] q, = CL39 

d 

dz 

(3.8) 

Substituting the expressions (3.8) into the homogeneous system of differential equations 

corresponding to (2.5), we obtain the following equation for 7c) : 

A general solution of this equation for the shear modulus of the form (3.7) was given in 

n, lo]. Using this solution we can easily find from (3.8) the functions Sj(l) (j = 1, 2, 
3, 4) and thus construct the fundamental matrix of the system (2.5) for g(l) = 0. The 

four arbitrary constants should be arranged in such a way that the fundamental matrix 

becomes a unit matrix when z = zo. This matrix is, by definition, the matrizant. 
We can easily obtain the solution of (3.9) in the case when the shear modulus varies 

according to the law G(,) - ‘I’ - G / ( 1 $ cz), and the Poisson’s ratio is an arbitrary func- o 
tion of z. The solution has the form 

$ = C1eaz + C.Le-az + C, [ear S x (t) dt - emaz S X (t) F’dt] + 
0 0 

C,[e-~z~~(~)dt-e~z[ x (t) e-=43] , x (z) = G(l) (z) / [ 1 - ~(1) (z)] 
0 0 

Let us now consider the most general case of variation in the elastic properties in which 

the shear modulus and the Poisson’s ratio of the layer are bounded and Riemann-integra- 
ble functions of the coordinate z. In this case the matrixant ~zOz (aA( can be found 

using the following representation of the operator [8]: 

S&,‘(...) ==E+( (...)a~+( (...)dzi (...)dz+... (3.10) 
20 20 20 

Applying this operator to the matrix aA and taking a sufficient number of terms, we 

can reach any prescribed degree of accuracy. In most cases however, it is simpler to 

employ the expression for the matrizant in the form of the following multiplicative in- 

tegral [8] : 
Q2,,” (aA( = 7:. (E + aA(l) (3.11) 

To compute this integral, we divide the interval [z,, z] into j arbitrary segments intro- 
ducing the intermediate points zr, z2, . . .,zj+ and setting A*zk = ok - zk_l (k = 

1, 2, . . ., j; Zj = z). We select the point Lk (k = 1, 2, . . ., j) from the interval 

[zll-1, z k 1 and denote 
A(1) 12=6k = Ak 

Since the multiplicative integral is defined by the following integral products [S]: 
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s 
’ (23 + aAWiz) = lirn (E + aAiA*q) . . . (E + uAIA*zl) (3.13) 
zo .l*z),-.‘o 

j-*m 

we can use any of these expressions to compute the approximate value of the mat&ant, 

by assigning to j some finite values. The formulas (3.12) and (3.13) are particularly 

suitable for digital machine computation. 

As we said before, a particular case of the problem under consideration was dealt with 

in [S, 6 J where the sag of an inhomogeneous layer resting on a rigid support, caused by 

the action of a normal axisymmetric load appiied at the boundary surface was studied. 
It was assumed that the Poisson’s ratio was constant and the shear modulus E (2) varied 

continuously with depth. The final formula for computing the sags was represented by 
an improper integral of a function, the determination of which required the computation 
of a multiplicative integral formally resembling (3.13). However, comparing the matrix 

A(r) with the corresponding matrix given in [5, 61, we come to the conclusion that the 

elements of the latter matrix are more complicated and less suitable for imputations, 
and contain the derivatives dE (2) / dz. This implies that the solution of the problem in 

question given in the present paper is simpler, and therefore preferable. 

4. Let us show how an analogous problem in which the mass forces X act on the 
layer, should be solved. A particular case of this problem in which a shearing force acts 

at the boundary surface, is of interest in the problem of computing the action of forces 

on road coverings. In solving the problem we must assume that the function X := X (P, 
0, z) can be represented by a double Fourier series in fl and a Hankel integral in r, 

i.e. in the form of (2.1) in which Z is replaced by X. Then the formulas (1. 2)yield 

cpr = - dY ! az, (p2 = - aur I ay 

+m 
\j? =_z 

2 
e’r~~~a(~,~,7~l)ln(C1T)~ 

r,,= -cc 0” 

The form in which the functions cpr and (p% appear, suggests the form which the unknown 
functions Sj (i = 1,2,3,4), N, and Ns must assume to make the variables in (1.3) 

and (1.4) separable. This will make it possible to reduce the initial three-dimensional 
problem of the theory of elasticity to the boundary value problems for ordinary differen- 
tial equations. The remaining part of the procedure is similar to that already given. 
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Two problems of plane strain of an elastic infinite wedge reinforced by an infi- 
nite constant-thickness beam are considered, In the first problem the beam is 
welded to the wedge along the bissectrix and is in complete contact with it. A 
longit~inal force, a transverse force, and a bending moment are applied to the 
end of the beam and arbitrary normal and tangential stresses are given on the 
boundary surfaces of the wedge. In the second problem, the beam is in contact 
without friction with one face of the wedge, arbitrary stress resultants act on both 
the wedge and the beam. Both problems are reduced to first-order difference 
equations and are solved in closed form. 

1. In an elastic wedge let 0 < r < 00, - a < 8 < CL, an elastic beam 2h. 
thick (Fig. 1) is welded along the 8 = 0 axis, and the contact surfaces of the wedge 
and beam. are connected completely. A longitudinal tensile force 2T, a bending mo- 
ment 244, a transverse force 2P or another load causing equivalent stress resultants 
at the point r=O of the beam act on the free part of the beam 0 = rc . Concentrated 
forces, a normal 2% and tangential 2s , are applied to the wedge at its ‘face 9 := CI. 
as an arbitrary load. 


